Skip to contents

Retrieves the feature names post-dimensionality reduction In the case of module analysis, these are the names of the gene modules; in the case of factor analysis, these are the names of the factors.

Usage

# S4 method for class 'FactorisedExperiment'
componentNames(object) <- value

# S4 method for class 'ModularExperiment'
componentNames(object) <- value

# S4 method for class 'ModularExperiment'
moduleNames(object)

# S4 method for class 'ModularExperiment'
moduleNames(object) <- value

# S4 method for class 'ReducedExperiment'
componentNames(object)

# S4 method for class 'ReducedExperiment'
componentNames(object) <- value

Arguments

object

A ReducedExperiment object.

value

New value to replace existing names.

Value

A vector containing the names of the components.

Details

componentNames is valid for all ReducedExperiment objects, whereas moduleNames is only valid for ModularExperiments.

Author

Jack Gisby

Examples

# Create randomised data with the following dimensions
i <- 300 # Number of features
j <- 100 # Number of samples
k <- 10 # Number of factors

rand_assay_data <- ReducedExperiment:::.makeRandomData(i, j, "gene", "sample")
rand_reduced_data <- ReducedExperiment:::.makeRandomData(j, k, "sample", "component")

re <- ReducedExperiment(
    assays = list("normal" = rand_assay_data),
    reduced = rand_reduced_data
)

stopifnot(all.equal(componentNames(re), colnames(rand_reduced_data)))

print(paste0("Component name at [2]: ", componentNames(re)[2]))
#> [1] "Component name at [2]: component_2"
componentNames(re)[2] <- "custom_component_name"
print(paste0("Component name at [2]: ", componentNames(re)[2]))
#> [1] "Component name at [2]: custom_component_name"