Get and set loadings
Source:R/methods-FactorisedExperiment.R
, R/methods-ModularExperiment.R
loadings.Rd
Method for getting and setting loadings for a ReducedExperiment object.
Usage
# S4 method for class 'FactorisedExperiment'
loadings(
object,
scale_loadings = FALSE,
center_loadings = FALSE,
abs_loadings = FALSE
)
# S4 method for class 'FactorisedExperiment'
loadings(object) <- value
# S4 method for class 'ModularExperiment'
loadings(
object,
scale_loadings = FALSE,
center_loadings = FALSE,
abs_loadings = FALSE
)
# S4 method for class 'ModularExperiment'
loadings(object) <- value
Arguments
- object
ReducedExperiment object or an object that inherits from this class.
- scale_loadings
If
TRUE
, loadings will be scaled to have a standard deviation of 0. If the loadings are a matrix, this operation is performed column-wise.- center_loadings
If
TRUE
, loadings will be centered to have a mean of 0. If the loadings are a matrix, this operation is performed column-wise.- abs_loadings
If
TRUE
, the absolute values of the loadings will be returned.- value
New value to replace existing loadings.
Value
If object
is a FactorisedExperiment, the
loadings matrix will be returned, with features as rows and reduced
components as columns. If object
is a
ModularExperiment, the loadings
will be returned as a vector, with a value for each feature (usually genes).
Details
When available, the module loadings provide the values of the rotation matrix
(usually generated by prcomp) used to calculate the
sample-level module vectors available in the reduced
slot. Normally, these
loadings are calculated for each module separately, so their values are
not comparable across modules.
Examples
# Create ModularExperiment with random data (100 features, 50 samples,
# 10 modules)
me <- ReducedExperiment:::.createRandomisedModularExperiment(100, 50, 10)
me
#> class: ModularExperiment
#> dim: 100 50 10
#> metadata(0):
#> assays(1): normal
#> rownames(100): gene_1 gene_2 ... gene_99 gene_100
#> rowData names(0):
#> colnames(50): sample_1 sample_2 ... sample_49 sample_50
#> colData names(0):
#> 10 components
# Retrieve the loadings
loadings(me)[1:10]
#> gene_1 gene_2 gene_3 gene_4 gene_5 gene_6 gene_7
#> 0.5476249 0.1934835 -1.5541655 0.0636397 0.1958725 -1.0233546 -0.2377076
#> gene_8 gene_9 gene_10
#> -0.2706039 -2.1030913 1.1520160
# Change a loading
loadings(me)[9] <- 8
loadings(me)[1:10]
#> gene_1 gene_2 gene_3 gene_4 gene_5 gene_6 gene_7
#> 0.5476249 0.1934835 -1.5541655 0.0636397 0.1958725 -1.0233546 -0.2377076
#> gene_8 gene_9 gene_10
#> -0.2706039 8.0000000 1.1520160